Naukowcy odkryli, że zamknięcie światła w niektórych materiałach magnetycznych może znacznie wzmocnić ich właściwości, zapewniając potencjalne innowacje, takie jak lasery magnetyczne i nowe spojrzenie na optycznie sterowaną pamięć magnetyczną.
Przełomowe badanie przeprowadzone przez Vinoda M. Menona i jego zespół z City College w Nowym Jorku ujawnia, że uwięzienie światła w materiałach magnetycznych może znacznie poprawić ich wewnętrzne właściwości. Te zwiększone interakcje fotoniczne w magnesach torują drogę innowacjom w laserach magnetycznych, magnetooptycznych urządzeniach pamięciowych, a nawet w powstających zastosowaniach teleportacji kwantowej.
Jak wyszczególniono w ich nowym artykule opublikowanym 16 sierpnia w czasopiśmie NaturaMenon i jego zespół zbadali właściwości magnesów warstwowych zawierających silnie skorelowane ekscytony — kwazicząstki o szczególnie silnych oddziaływaniach fotonicznych. Z tego powodu materia jest w stanie uwięzić światło – wszystko na własną rękę. Jak pokazują ich eksperymenty, reakcje optyczne tego materiału na zjawiska magnetyczne są silniejsze niż w przypadku typowych magnesów.
„Ponieważ światło odbija się tam iz powrotem wewnątrz magnesu, interakcje są naprawdę wzmocnione” – powiedział dr Florian Dernberger, główny autor badania. „Dając przykład, kiedy zastosujemy zewnętrzne pole magnetyczne, współczynnik odbicia światła bliskiej podczerwieni bardzo się zmienia, a materiał zasadniczo zmienia swój kolor. Jest to bardzo silna reakcja magneto-optyczna.”
„Zwykle światło nie reaguje silnie na magnetyzm” – powiedział Menon. „Dlatego aplikacje technologiczne oparte na efektach magneto-optycznych często wymagają wdrożenia czułych systemów detekcji optycznej”.
O tym, w jaki sposób postęp może przynieść korzyści zwykłym ludziom, współautor badania, Jimin Kwan, zauważył: „Techniczne zastosowania materiałów magnetycznych są dziś w większości związane ze zjawiskami elektromagnetycznymi. Biorąc pod uwagę te silne interakcje między magnetyzmem a światłem, możemy mieć nadzieję, że pewnego dnia stworzymy lasery”. magnetyczne i możemy powrócić do starych koncepcji optycznie kontrolowanej pamięci magnetycznej”.
Odniesienie: „Magnetic Optics in Van der Waals Magnets Tuned by Self-Hybridized Polarities” Florian Dernberger, Jimin Cowan, Rislind Bouchaty, Jeffrey M. Dederich, Matthias Florian, Julien Klein, Ksenia Musina, Zdenek Sofer, Xiaodong Xu i Akashdeep. Kamra, Francisco J. García-Vidal, Andrea Alù i Vinod M. Menon, 16 sierpnia 2023 r., dostępne tutaj. Natura.
DOI: 10.1038/s41586-023-06275-2
Rislind Bushati, absolwentka grupy Menona, również przyczyniła się do prac eksperymentalnych.
Badanie, przeprowadzone w ścisłej współpracy z Andreą Alù i jego grupą w Centrum Zaawansowanych Badań Naukowych CUNY, jest wynikiem dużej współpracy międzynarodowej. Eksperymenty przeprowadzone w CCNY i ASRC zostały uzupełnione pomiarami wykonanymi w Uniwersytet Waszyngtoński W kolekcji profesora Xiaodong Xu dr Jeffreya Diedericha. Wsparcie teoretyczne zapewnili dr Akashdeep Kamra i profesor Francisco J. Garcia Vidal z Autonomicznego Uniwersytetu w Madrycie i dr Matias Florian z University of Michigan. Materiały zostały opracowane przez prof. Zdenka Sofera i Ksenię Mosinę z UCT Praga, a projekt był wspierany przez dr Juliana Kleina z Instytut Technologii w Massachusetts. Praca w CCNY była wspierana przez Biuro Badań Naukowych Sił Powietrznych Stanów Zjednoczonych, Narodową Fundację Nauki (NSF) – Dział Badań Materiałowych oraz Centrum NSF CREST IDEALS, DarpaNiemiecka Fundacja Badawcza.
„Nieuleczalny myśliciel. Miłośnik jedzenia. Subtelnie czarujący badacz alkoholu. Zwolennik popkultury”.
More Stories
Emdoor przygotowuje się do zaprezentowania swoich osiągnięć w zakresie nowej technologii sztucznej inteligencji podczas targów Global Sources Mobile Electronics Show 2024.
LinkedIn wykorzystuje Twoje dane do szkolenia Microsoft, OpenAI i jego modeli AI – oto jak to wyłączyć
Zapomnij o Apple Watch Series 10 — Apple Watch Ultra 2 w kolorze Satin Black to smartwatch, który warto mieć